

TMS Grid for FireMonkey

Introducing TTMSFMXGrid: a flexible, productivity feature-packed
cross platform grid for FireMonkey

Introduction

As soon as Delphi XE2 with the new FireMonkey framework was released, we received almost
daily emails from customers requesting the TAdvStringGrid for the FireMonkey framework.
From day one, we have said that a TMS grid for FireMonkey only made sense as a long term
project of a grid designed in the spirit and according to the principles of the FireMonkey
framework, being style-able a fundamental requirement. As the FireMonkey framework is
fundamentally different from the VCL framework, the TMS team first wanted to wet its feet with
the development of several more lightweight FireMonkey components. Only after we felt
sufficiently experienced and introduced to the inner workings of the FireMonkey framework, we
started the architecting of a new grid. A solid house is built on strong foundations.

TMS Grid for FireMonkey

Requirements

Several months ago, when we met to set the requirements of the new grid, this was the shortlist:

1. Being fully cross platform: the grid had to work well on Windows 32bit, 64bit, Mac OS-X
and iOS. This means relying solely on the FireMonkey framework and only when strictly
needed provide wrappers for OS specific functions to offer the same functionality across
all platforms.

2. Fully respect the principles of the FireMonkey framework thus being style-able. The
different visual elements of the grid need not only to be editable in the IDE style editor to
modify fill, font, strokes, … but also offer the flexibility of full customization through
modifying the style template.

3. High performance: we wanted a grid that can display 500.000 rows and 10.000 columns
without any significant performance hit. This is perhaps the most difficult requirement
when designing something with the FireMonkey framework, especially when deploying
to iOS. Weeks were spent on finding the right architecture with the right balance
between performance and customizability.

4. Feature-rich, data oriented: in the first place, the grid is oriented towards LOBs (line of
business applications). Displaying huge amounts of data, allowing editing with various
inplace editor types, searching, filtering, sorting, importing & exporting to various
formats, printing, …

5. Familiar with VCL TAdvStringGrid: The VCL TAdvStringGrid has a history of over 15
years by now. This means that many of its features were developed over time. Through
all these years, keeping backwards compatibility was a top priority and that led here and
there to suboptimal properties, events and method interfaces. Interface compatibility with
TAdvStringGrid was as such not a goal of the TMS Grid for FireMonkey. The grid is
designed partly in the spirit of TAdvStringGrid so that users will be quickly familiar with it
but interface organisation was cleaned up to make it more intuitive for new users or
users with no experience with the VCL TAdvStringGrid.

TMS Grid for FireMonkey

Being style-able as core feature: TMS Grid for FireMonkey in the IDE style editor

Introducing the TMS Grid for FireMonkey

In its basic layout, a grid is a matrix of cells with mainly fixed cells (not editable) and normal
cells. A fixed cell will not scroll along with normal cells and thus remain visible on any of the 4
sides of the grid. This number of fixed rows and/or columns on the 4 sides of the grid is
controlled by properties: grid.FixedRows, grid.FixedColumns, grid.FixedFooterRows,
grid.FixedRightColumns. In addition to fixed, non-scrolling rows and/or columns, the grid can
also perform column freezing. These are columns or rows of normal cells that will not scroll
along with the other columns or rows in the grid. The number of freeze columns and rows is set
with grid.FreezeColumns, grid.FreezeRows. Cells are accessible via
grid.Cells[Column,Row]:string and the selected cell(s) can be set with properties:

 grid.Selection := CellRange(StartCol,StartRow,EndCol,EndRow);

 grid.FocusedCell := Cell(Col,Row);

The grid features several selection modes: single cell selection, single row selection, single
column selection, cell range selection, row range selection, column range selection, disjunct row

TMS Grid for FireMonkey

selection, disjunct cell selection and disjunct column selection. The selection mode is chosen
with the property:

 grid.SelectionMode: TTMSFMXGridSelectionMode;

The scroll position in the grid can be programmatically set or retrieved via the properties
grid.LeftCol: integer, grid.TopRow: integer.
Note that scrolling in the grid can be performed in two ways: cell scrolling and pixel level
scrolling. In cell scrolling mode, the minimum quantity of a scroll is an entire column or row, in
pixel scrolling mode, scrolling is per pixel and can thus be done on sub cell level. The scrolling
mode is controlled by the property:

 grid.ScrollMode = (smCellScrolling, smPixelScrolling)

The size of columns & rows is controlled by grid.ColumnWidths[ColumnIndex],
grid.RowHeights[RowIndex] and it can be configured that the user can resize columns or rows
at runtime with: grid.Options.ColumnSizing,grid.Options.FixedColumnSizing,
grid.Options.RowSizing, grid.Options.FixedRowSizing.

Importing and exporting data with the TMS Grid for FireMonkey

The grid is able to import data from different file formats as well as export it to different formats.
The top left cell from where the loading of data starts is set with grid.IOOffset: TPoint. Typically
this is set to the first normal cell in the grid, i.e.

 grid.IOOffset := Point(grid.FixedColumns,grid.FixedRows);

 Following formats and methods are available:

1. Simple format to persist cell text, column widths, row heights (file format compatible with
VCL TAdvStringGrid)

 grid.LoadFromFile(FileName: string);
 grid.SaveToFile(FileName: string);

2. CSV files

grid.LoadFromCSV(FileName: string);

grid.SaveToCSV(FileName: string);

3. Fixed column width text files

grid.LoadFromFixed(FileName: string);

grid.SaveToFixed(FileName: string);

TMS Grid for FireMonkey

4. Memory stream with cell text, column widths, row heights

 grid.LoadFromStream();

 grid.SaveToStream();

5. Microsoft .XLS files

The component TTMSFMXGridExcelIO is offered that allows to import and export to
Microsoft .XLS file format.

6. Export to RTF files

The component TTMSFMXGridRTFIO is offered that allows to export the grid to RTF file
format.

7. Export to XML files

grid.SaveToXML() performs an export of the data in XML format.

Sorting, grouping and filtering data in the grid

The grid has built-in sorting capabilities as well as filtering capabilities. Sorting can be performed
from the UI by clicking the column header to perform a sort on a column and can be done
programmatically as well. Four types of sorting are available:

TMS Grid for FireMonkey

Single column sort
Multi column sort
Single column grouped sort
Multi column grouped sort

For single column sort, the sort is based on just a single column clicked. Clicking a new column
will perform the sort on the new column clicked. In multi column sort mode, additional columns
can be used as sort criteria by performing a shift-click on the column header. When the grid is
grouped, the equivalent sorting capabilities are available but limited to groups, i.e. rows are
sorted within groups rather than within the full grid.
Programmatically sorting can be done with:

 grid.SortData(ColumnIndex, SortDirection); // single column sort

 grid.SortIndexes.AddIndex(ColumnIndex1, SortDirection1); // multi
column sort on column 1,2

 grid.SortIndexes.AddIndex(ColumnIndex2, SortDirection2);

 grid.SortIndexed;

Note that to control sorting from the UI, the events OnCanSortColumn, OnColumnSorted events
are available.

To perform grouping of data on a column, simply call

 grid.Group(ColumnIndex)

and to undo the grouping, call:

 grid.UnGroup;

Filtering can be performed programmatically. The filter conditions are added via the grid.Filter
collection property and filtering is started by calling grid.ApplyFilter;

 var
 fltr: TFilterData;

 grid.Filter.Clear;

 fltr := grid.Filter.Add;

 fltr.Condition := 'Some condition';

 fltr.Column := ColumnIndex1;

 fltr := grid.Filter.Add;

 fltr.Condition := 'Other condition';

 fltr.Column := ColumnIndex2;

 fltr.Operation := foAND;

 grid.ApplyFilter;

TMS Grid for FireMonkey

Cell properties and controls

In its most basic form, two types of cells exist, the fixed cells and normal cells. A normal cell can
be in normal state, in selected state and in focused state. The style for these different states can
be edited in the IDE via the style editor but can be programmatically accessed as well. To
programmatically change the default style for a normal cell to make it appear with a yellow
background color and red border, following code could be used:

 grid.GetDefaultNormalLayout.Layout.Fill.Color := claYellow;

 grid.GetDefaultNormalLayout.Layout.Stroke.Color := claRed;

 grid.ApplyStyle;

The style of cells can also be dynamically changed with the event OnGetCellLayout. This
example implementation of the OnGetCellLayout event will set the font color of cells with a
value higher than 50 to red and as this is a column with numbers only, set its alignment to right
justified:

procedure TForm1.TMSFMXGrid1GetCellLayout(Sender: TObject; ACol, ARow:

Integer;

 ALayout: TTMSFMXGridCellLayout; ACellState: TCellState);

var

 i,e: integer;

begin

 if (ACol = 2) and (ARow >= TMSFMXGrid1.FixedRows) then

 begin

 ALayout.TextAlign := TTextAlign.taTrailing;

 val(TMSFMXGrid1.Cells[ACol, ARow],i,e);

 if i > 50 then

 ALayout.FontFill.Color := claRed;

 end;

end;

Programmatic access to many cell appearance characteristics are also available:

grid.Alignments[ColumnIndex, RowIndex]: TTextAlign;

grid.Colors[ColumnIndex, RowIndex]: TAlphaColor;

grid.FontColors[ColumnIndex, RowIndex]: TAlphaColor;

grid.FontStyles[ColumnIndex, RowIndex]: TFontStyle;

grid.FontNames[ColumnIndex, RowIndex]: string;

grid.FontSizes[ColumnIndex, RowIndex]: integer;

The above information applies to default cells (in the grid of the class TTMSFMXGridCell) but
you can actually add any type of FireMonkey TFMXObject as a cell in the grid.This can be done
in following way with the event OnGetCellClass:

procedure TForm1.TMSFMXGrid1GetCellClass(Sender: TObject; ACol, ARow:

Integer;

 var CellClassType: TFmxObjectClass);

begin

TMS Grid for FireMonkey

 if (ACol = 3) and (ARow >= TMSFMXGrid1.FixedRows) then

 CellClassType := TTMSFMXCheckGridCell;

 if (ACol = 4) and (ARow >= TMSFMXGrid1.FixedRows) then

 CellClassType := TButton;

end;

This code snippet specifies a checkbox (a specific grid adapted checkbox that can have a
background color) for column 3 and a button for column 4. Note that using OnGetCellClass
means that the grid itself will be responsible for the creation of the cell control. It is equally
possible to insert any type of control in a cell that was created outside the grid via the event
OnGetCellControl.
This allows for an unprecedented flexibility to customize the grid. For example, inserting a grid
in a grid cell is equally simple this way:

procedure TForm1.TMSFMXGrid1GetCellControl(Sender: TObject; ACol,

ARow: Integer;

 var AControl: TFmxObject);

begin

 if (ACol = 2) and (ARow = 2) then

 AControl := MySubGrid;

end;

Several methods are provided as well that allow to add controls to cells programmatically:

grid.AddCheckBox()

grid.AddDataCheckBox()

grid.AddRadioButton()

grid.AddBitmap()

grid.AddNode()

grid.CellControls[ColumnIndex, RowIndex]: TControl

Cell merging

TMS Grid for FireMonkey

The grid has built-in support for cell merging. Cell merging means that several adjacent cells are
merged together to form a new single cell. The access to a merged cell is done via the top left
cell. Cell merging and the reverse action, cell splitting is easy:

 grid.MergeCells(Col, Row, ColumnCount, RowCount: integer);

 grid.SplitCell(Col,Row: integer);

and several helper functions exist:

 grid.IsMergedCell(), grid.RowSpan(), grid.ColSpan(),

grid.BaseCell().

Editing the grid

The grid supports different inplace editors as well as the capability to choose any type of
FireMonkey control as inplace cell edit control. By default, a cell is edited with a regular TEdit
control. Different editor types can be selected from the built-in edit controls via the event
OnGetCellEditorType:

procedure TForm1.TMSFMXGrid1GetCellEditorType(Sender: TObject; ACol,

 ARow: Integer; var CellEditorType: TTMSFMXGridEditorType);

begin

 case acol of

 1: CellEditorType := etNumericEdit;

 2: CellEditorType := etNumericEditBtn;

 3: CellEditorType := etComboBox;

 4: CellEditorType := etDatePicker;

 5: CellEditorType := etCustom;

 end;

end;

TMS Grid for FireMonkey

The TTMSFMXGridEditorType defines many types of already built-in editor types in the grid.
This includes different kind of editors for string, numeric, float, hex type, a spin editor, date
picker, color picker, combobox, trackbar and dial. When using the OnGetCellEditorType,
normally nothing else is required to handle editing. If in addition validation is needed, the event
OnCellEditValidateData can be implemented. This event is triggered when editing is about to
stop. It passes the new edited value together with an Allow parameter. In this example event
handler, the validation is performed that the maximum length cannot exceed 10:

procedure TForm1.TMSFMXGrid1CellEditValidateData(Sender: TObject;

ACol,

 ARow: Integer; CellEditor: TFmxObject; var CellString: string;

 var Allow: Boolean);

begin

 Allow := Length(CellString) <= 10;

end;

If another type of FireMonkey control is needed as inplace editor that is not listed in
TTMSFMXGridEditorType, the CellEditorType can be set to etCustom. In this case, the grid will
trigger the event OnGetCellEditorCustomClassType. In this event, it can be specified via the
parameter CellEditorCustomClassType what the class is of the inplace editor:

procedure TForm1.TMSFMXGrid1GetCellEditorCustomClassType(Sender:

TObject; ACol,

 ARow: Integer; var CellEditorCustomClassType: TFmxObjectClass);

begin

 if ACol = 5 then

 CellEditorCustomClassType := TMyVerySpecialCustomEditor;

end;

To map the cell content to the custom inplace editor and vice versa, the events
OnCellEditGetData, OnCellEditSetData can be used.

procedure TForm1.TMSFMXGrid1CellEditGetData(Sender: TObject; ACol,

 ARow: Integer; CellEditor: TFmxObject; var CellString: string);

begin

 if (ACol = 5) then

 begin

 (CellEditor as TMyVerySpecialCustomEditor).Data := CellString;

 end;

end;

procedure TForm1.TMSFMXGrid1CellEditSetData(Sender: TObject; ACol,

 ARow: Integer; CellEditor: TFmxObject; var CellString: string);

begin

 if (ACol = 5) then

 begin

 CellString := (CellEditor as TMyVerySpecialCustomEditor).Data;

 end;

TMS Grid for FireMonkey

end;

Printing, print preview, print to image

Even when we’re living in the digital age, for a lot of people, data only exists when it is on paper.
The grid being the primary tool of data presentation and organization features as such also a
printing capability. The full grid or a range of cells can be printed. Printing is as easy as calling
grid.Print but many more equivalent methods are available like: grid.PrintPageSelection(),
grid.PrintPageFromTo() and many more to limit nr. of cells to print, limit nr. of pages etc.. As a
helper, there is also a print preview dialog component: TTMSFMXPrintPreviewDialog that is
simple in its use. Assign a grid to the TMSFMXPrintPreviewDialog.Grid property and call its
Execute method.
Finally, the print output can also be rendered to an image file or a memory bitmap canvas. The
method grid.PrintPageToImage(FileName:string) can generate .BMP, .PNG, .GIF and .JPG
files. The file format simply depends on the extension of the filename specified.

Conclusion

TMS Grid for FireMonkey

In this article, we have tried to give a background on the requirements and decisions that were
made in the creation of the TMS Grid for FireMonkey and gives an overview of its capabilities.
Each topic covered in this overview article can be elaborated in much more detail and depth
unveiling the power of the grid. Please see the TMS Grid for FireMonkey developers guide for
this.

